NTTRODUCTION

Storage Reservoirs and Over Head Tanks are used to store water, liquid petroleum \& similar liquids. The force analysis of the reservoirs or tanks is about the same irrespective of the chemical nature of the product.

In general there are three kinds of water tanks-
1.Tanks resting on ground
2.Underground Tanks
3.Elevated tanks

The tanks may have circular or rectangular section.
Tanks resting on ground \& Underground may have flat bottom slab, while Elevated ones may have flat or Conical bottom.

TYPES OF WATER TANKS

COMPARISON OF TANKS

RECTANGULAR TANK	CIRCULAR TANK	INTZE TANK	PRESTRESSE D TANKS
For smaller capacities we go for rectangular tanks	For bigger capacities we go for circular tanks	Intze tank is constructed to reduce the project cost because lower dome in this construction resists horizontal thrust	For bigger tanks, prestressing is the superior choice resulting in a saving of 20%.

Rectangular water tank introduction

Rectangular tanks are used when the storage capacity is small.
Rectangular tanks should be preferably square in plan from point of view of economy.
It is also desirable that longer side should not be greater than twice the smaller side.
Moments are caused in two directions of the wall
i.e., both in horizontal as well as in vertical direction,

Exact analysis is difficult and are designed by approximate methods.
When the length of the wall is more in comparison to its height, the moments will be mainly in the vertical direction, i.e., the panel bends as vertical cantilever

1. Concrete should be impervious-

Concrete should be rich in cement content i.e. water-cement ratio should be low. The quantity of cement in mix should not be less than $3 \mathrm{KN} / \mathrm{m}^{3}$, again to keep shrinkage low the quantity of cement should not exceed $5.3 \mathrm{KN} / \mathrm{m}^{3}$. Generally M30 grade of concrete is used.

To avoid leakage problems, Limit State Method of Design should be avoided. IS:456-2000 is silent about permissible stresses in direct tension, hence from IS:3370, it is obvious that guidelines of previous version of IS:456 should be used which is based on Working Stress Method.

GENERAL REOUIREVVIENIS

2. CRACK DEVELOPMENT

1. Due to dimensional movements in concrete on account of temperature \& moisture changes.
2. Due to differential expansion of thick members due to Heat of Hydration.
3. Cracks caused by Unequal Settlement

- Proper curing
- Provision of joints
- Reinforcements in each of 2 directions at right angles.
- Expansion \& Shrinkage of concrete should be considered during its design.
- Subdivide the tank in smaller compartments with provision of necessary joints.

$6(\bigcirc) N(C, \square)$

GRADE OF CONCRETE	PERMISSIBLE STRESS IN DIRECT TENSION (N/mm)	PERMISSIBLE STRESS IN TENSION DUE TO BENDING ($\mathrm{N} / \mathrm{mm}^{2}$)	PERMISSIBLE STRESS IN SHEAR ($\mathrm{N} / \mathrm{mm}^{2}$)
M 15	1.1	1.5	1.5
M 20	1.2	1.7	1.7
M 25	1.3	1.8	1.9
M 30	1.5	2.0	2.2
M 35	1.6	2.2	2.5

PERIVIISSIBLE STRESSES

IN STFEEI

TYPE OF STRESS IN STEEL REINFORCEMENT

PERMISSIBLE STRESSES IN N/mm2

Plain round mild steel	
bars	High yield strength deformed bars(HYSD)

On liquid retaining face of members 115 150
On face of away from liquid for members 115 150
less than 225 mm
On face away from liquid for members 125 190
225 mm or more in thickness
3) Tensile stresses in shearreinforcement(?sv)115150
125 175

125
175
1)Tensile stresses in the members under direct tension(?s)2) Tensile stress in members inbending(?st)

115 150 1

2) Tensile stress in members in bending(?st)

For members less than 225 mm in thickness For members 225 mm or more in thickness

VINIMIUIVI RENYFOR REQUIRED

- For thickness up to 100 mm , minimum \% of reinforcement should be 0.3\%
- For thickness from 100 mm to 450 mm , it may be reduced linearly to 0.2%
- i.e. $P(\mathrm{~min})=0.3$ up to 100 mm thick sections
- $\mathrm{P}(\mathrm{min})=0.3-0.1^{*}[(\mathrm{t}-100) /(450-100)]$ where ' t ' lies b/w 100 mm to 450 mm
- Minimum reinforcement should be ensured in both directions.
- If thickness of section is more than 225 mm , layer of bars are required near both face.

There are several analysis methods like Bending Theory, Plate Load theory, Finite Element analysis etc. But we commonly use "Approximate Method of Analysis" for water tanks. In this method, it is assumed that-

In case of Circular tanks, bottom $1 / 3^{\text {rd }}$ Or 1 m (whichever is greater) \& for Rectangular tanks, Bottom $1 / 4^{\text {th }}$ or 1 m (whichever is greater) is predominantly under Cantilever action.

Rest of the Wall is resisting the Water Pressure by forces Developed in Horizontal direction.

(a) Load sharing

ANALYSIS

In this method, the bottom height of wall BP is designed as a Cantilever Fixed at B \& subjected to Triangular load given by
Area DBC of Pressure Triangle. Load at B=wH
Reinforcement for Cantilever Action is provided Up to height ' h ' from inner face of wall.

The advantage of this method over other sophisticated methods is that-

1. It is a simple method
2. It is more practical \& gives a feel of the Structural Behaviour
3. "Confusion driven disasters " caused due to mistakes of Draughtsmen in understanding sign conventions \& analysis steps of other complex methods can be avoided.

INTRODUCTION

* Rectangular Tanks are provided when capacity of liquid to be stored is small.
* For small capacities, circular tanks are uneconomical on account of curved shuttering thus Rectangular Tanks prove to be economical in this case.
* Unlike Circular tanks, rectangular tanks occupy entire available area, so it is easy to divide the tank in compartments \& design.
- The components of a Rectangular Tank are-
> 1.Side walls
> 2.Base Slab
> 3.Roof Slab
- The design of walls by Approximate method is broadly classified into two categories-

1. Tanks having ratio $L / B<2$
2. Tanks having ratio $L / B>2$

- In this case, Tank is designed as a Horizontal slab all around (b/w corners) \& subjected to triangular load due to hydrostatic pressure from 0 at top to $\mathrm{H} / 4$ or 1 m above the base (whichever is more).
- From bottom junction to Height of $\mathrm{H} / 4$ or 1 m (whichever is more), the wall is treated as a vertical cantilever fixed at base.
- Maximum Pressure(p) $=\mathrm{w}(\mathrm{H}-\mathrm{h})$ at D .
- Maximum Cantilever Moment= $[(1 / 2)(\mathrm{wH})(\mathrm{h})](\mathrm{h} / 3)$ at $(\mathrm{h} / 3)$ from base
- The pressure(p) is resisted by the closed frame action of tank.
- The fixed end moments at A are $\left(\mathrm{pB}^{2} / 12\right) \&\left(\mathrm{pL}^{2} / 12\right)$. Using Moment Distribution method, they can be Balanced.

PULL ON LONG WALLS

- Since the short walls span b/w Long walls, above D, the water pressure on short walls gets transferred to Long walls as Tension.
a Considering 1 m high strip of short wall at height ' h '
- Total Tension= w(H-h)*1*B
- Pull on each Long wall (Ti)
- $\mathrm{Tt}_{\mathrm{l}}=(1 / 2) \mathrm{w}(\mathrm{H}-\mathrm{h}) \mathrm{B}$

PULL ON SHORT WALLS

- In the similar fashion, Long walls support the short walls \& water pressure gets transferred to short walls as Tension(pull).
- Considering 1 m High strip of Long walls at height ' h '
- Total Tension $=w(H-h)^{*} 1^{*} \mathrm{~L}$
- Pull on each short wall (T_{B})
- $\mathrm{T}_{\mathrm{B}}=(1 / 2) \mathrm{w}(\mathrm{H}-\mathrm{h}) . \mathrm{L}$

\square
- In this case, the Long walls are treated as vertical cantilever fixed at base \& Short walls are treated as Horizontal slabs(bending horizontally) b/w Long walls.
- Maximum B.M in long walls= $(1 / 2) \mathrm{wH}^{*} \mathrm{H}^{*}(\mathrm{H} / 3)=\mathrm{wH}^{3} / 6$
- For short walls, Maximum BM at level P may be taken under-
- BM at ends of span= $\left[w(\mathrm{H}-\mathrm{h}) \mathrm{B}^{2}\right] / 12$
- BM at centre of span $=\left[\mathrm{w}(\mathrm{H}-\mathrm{h}) \mathrm{B}^{2}\right] / 16$
- Pull on Long wall $(\mathrm{T} \mathrm{\imath})=0.5 \mathrm{w}(\mathrm{H}-\mathrm{h}) . \mathrm{B}$
- Pull on Short Wall $(\mathrm{TB})=\mathrm{w}(\mathrm{H}-\mathrm{h})^{*} 1$
- Due to monolithic construction, it is Assumed that water pressure on about 1 m Of long wall adjacent to corner causes Tension in short wall.

- Distance of main reinforcement from central axis= x
- The effect of Horizontal tensile forces is to reduce the net moment in the walls.
- Thus final horizontal design moment = M-Tx
- The BM reduces towards top above edge, hence spacing may be increased towards top
- Near corners, BM is on inner face \& near centre it is on outer side.
- Area of steel for net BM (A_{T})
- $\mathrm{A}_{\boldsymbol{\top}}=(\mathrm{M}-\mathrm{Tx}) /$ (Lever arm * safe stress in steel)
- Area of steel for pull $(\mathrm{A})=\mathrm{T} /$ safe stress in steel
- Total Area of steel $=\mathrm{A}_{\boldsymbol{\top}}+\mathrm{A}$

- Design of circular tanks is simplest in nature.
- For same capacity, its construction requires less concrete than rectangular tanks, thus it is economical for large capacity storage.
- On account of circular shape, it
 can be made water tight easily as there are no sharp corners.
For purpose of design, circular tanks can be divided into following categories-
* 1. Tanks with sliding or flexible joint b/w floor \& wall.
* 2. Circular tank with rigid joint b/w floor \& wall.

CIRCULAR T/ANK V/ITHFLEXIBLE

 JOHNTF b/yy FI OOR \& YV/YEI■

- In this case, the wall is free to move outward when internal water pressure is applied. Hence the wall is subjected to Hoop Stress ' T ' only.
- T=yHd/2 (' d^{\prime} is dia of tank)
- Maximum Hoop Stress $=y(H-h) d / 2$
- Maximum Hoop stress occurs at $\mathrm{H} / 3$ or 1 m whichever is more

- Since the wall in this case is fixed with floor slab, circumferential elongation of wall is not possible at its Junction with floor slab \& hence Hoop stress is 0 there \& the entire Liquid pressure is resisted by Cantilever action.
- At a certain point D at a height h , above base slab, full Hoop Stress develops \& cantilever effect is 0 .
- At midway b/w D \& base slab, liquid pressure is resisted partly by Hoop action \& partly by Cantilever action
- Fig a shows likely deformation of wall
- Fig b shows Load distribution on wall
- Fig c shows B.M Diagram

- Depth of Neutral axis= nd
- $\mathrm{n}=\mathrm{mo}(\mathrm{cbc}) /[\mathrm{m} \mathrm{\sigma}(\mathrm{cbc})+\sigma(\mathrm{st})]$
- Lever arm= jd
- $j=1-(n / 3)$
- Moment of Resistance $=\mathrm{M}$
- $\mathrm{M}=\mathrm{kbd}^{2}$
- where $\mathrm{k}=0.5 \sigma(\mathrm{cbc}) \mathrm{jk}$
- Equivalent concrete section

口 $=A c+m A s s_{t}=A g ́+(m-1) A s ́ t$

- $\mathrm{m}=$ modular ratio (Es/Ec)
- m also $=280 / 3 \sigma(\mathrm{cbc})$

VIEW FOR RECTANGULAR WATER TANK

ALL DIMENSIONS IN m

AUTO CAD DESIGN

DESIGN PROBLEM

To design a tank ($12 m^{*} 5 m^{*} 4 m$). The bottom of tank is $12 m$ above the ground level. The tank is covered at top.SBC of soil $=150 \mathrm{KN} / \mathrm{m} 2$. Use M20 mix?

1)DESIGN OF ROOF SLAB:Reinforcement of slab

Specification	Size	Reinforcement details
Top slab	$12 \mathrm{~m} \times 5 \mathrm{~m}$	
-Long span		$8 \mathrm{~mm} \varnothing$ @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ $12 \mathrm{~mm} \varnothing @ 1500 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Short span		

TOP SLAB REINFORCEMENT

TOP SLAB

2) Design of Longer \& SHORTER SIDE WALLS

Specification	Size	Reinforcement details
Longer side wall	$12 \mathrm{~m} \times 4 \mathrm{~m}$	
$>$ Long span		8 mm Ø@300mm c/c
$>$ Short span		
1. +ve bending moment		$12 \mathrm{~mm} \emptyset$ @ $90 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
2. -ve bending moment		20 mm ¢ @110mm c/c
Shorter side wall	$5 \mathrm{~m} \times 4 \mathrm{~m}$	
> Long span		
I. At top		12 mm Ø@170mm c/c
II. At bottom		12 mm Ø@80mm c/c
$>$ Short span		
I. At supports		$12 \mathrm{~mm} \varnothing$ @ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
II. At middle		$10 \mathrm{~mm} \emptyset$ @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

REINFORCEMT IN LONG \& SHORT WALLS

LONGER SIDE WALL

SHORTER WALL

12 mm dia @ 170 mm clc

12 mm dia @ 70mm c/c

12 mm dia @90mm clc
12 mm dia @ 80mm clc

3)DESIGN OF BASE SLAB:-

\section*{| Specification | Size | Reinforcement details |
| :--- | :--- | :--- |}

16 mm Ø@80mm c/c 16 mm Ø @110mm c/c

16 mm Ø @110mm c/c
$10 \mathrm{~mm} \varnothing$ @ $220 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

REINFORCEMENT IN BASE SLAB

BASE SLAB

16 mm dia@80mm c/c

16 mm dia@110mm c/c

10 mm dia 220 mm c / c

Specification	Size	Reinforcement details
Beam I $>$	$480 \mathrm{~mm} \times 300 \mathrm{~mm}$	
Stirrups		

CONCLUSION

1) Storage of water in tanks has become a necessity for drinking and washing purposes in the present day life.
2) For small capacities we go for rectangular water tanks \& for large capacities we go for circular tanks.
3) The designed RCC rectangular tank can store water upto 240000 liters
4) In this design project we have analyzed the over head rectangular RCC water tank, through theoretical design and STAAD Pro program.
5) Although the stresses and bending moment are nearly equal but all the parameters used in the theoretical design cannot be fully adopted in the program design.
